Abstract
Recent studies have shown that relative permeability can be modeled as a state function which is independent of flow direction and dependent upon phase saturation (S), phase connectivity (X), and fluid–fluid interfacial area (A). This study evaluates the impact of each of the three state parameters (S, X, and A) in the estimation of relative permeability. The relative importance of the three state parameters in four separate quadrants of S-X-A space was evaluated using a machine learning algorithm (out-of-bag predictor importance method). The results show that relative permeability is sensitive to all the three parameters, S, X, and A, with varying magnitudes in each of the four quadrants at a constant value of wettability. We observe that the wetting-phase relative permeability is most sensitive to saturation, while the non-wetting phase is most sensitive to phase connectivity. Although the least important, fluid–fluid interfacial area is still important to make the relative permeability a more exact state function.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献