Optimal Sizing and Allocation of Distributed Generation in the Radial Power Distribution System Using Honey Badger Algorithm

Author:

Khan Muhammad HarisORCID,Ulasyar Abasin,Khattak AbraizORCID,Zad Haris ShehORCID,Alsharef Mohammad,Alahmadi Ahmad AzizORCID,Ullah NasimORCID

Abstract

There is increasing growth in load demands and financial strain to upgrade the present power distribution system. It faces challenges such as power losses, voltage deviations, lack of reliability and voltage instability. There is also a sense of responsibility in the wake of environmental and energy crises to adopt distributed renewable resources for power generation. These challenges can be resolved by optimally allocating distributed generators (DGs) at different suitable locations in the radial power distribution system. Optimal allocation is a non-linear problem which is solved by powerful metaheuristic optimization algorithms. In this work, an objective function is introduced to optimally size four different types of DGs by utilizing honey badger algorithm (HBA), and comparison is drawn with grey wolf optimization (GWO) and whale optimization algorithm (WOA). The objective is to boost the voltage profile and minimize the power losses of the standard IEEE 33bus and 69-bus radial power distribution system. It is observed from the simulation results that honey badger algorithm is faster than grey wolf optimization and whale optimization algorithm in reaching accurate and optimum results in a mere one and two iterations for IEEE 33-bus and 69-bus systems, respectively. Additionally, power losses are reduced to 71% and 70% for IEEE 33-bus and 69-bus, respectively.

Funder

Taif University researchers supporting project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3