Super-Twisting Algorithm-Based Virtual Synchronous Generator in Inverter Interfaced Distributed Generation (IIDG)

Author:

Singh Sudhir KumarORCID,Singh RajveerORCID,Ashfaq Haroon,Sharma Sanjeev KumarORCID,Sharma GulshanORCID,Bokoro Pitshou N.ORCID

Abstract

The significant proliferation of renewable resources, primarily inverter interfaced distributed generation (IIDG) in the utility grid, leads to a dearth of overall inertia. Subsequently, the system illustrates more frequency nadir and a steeper frequency response. This may degrade the dynamic frequency stability of the overall system. Further, virtual inertia has been synthetically developed in IIDG, which is known as a virtual synchronous generator (VSG). In this work, a novel STO-STC-based controller has been developed, which offers flexible inertia following system disturbance. The controller is based on the super-twisting algorithm (STA), which is a further advancement in the conventional sliding mode control (SMC), and has been incorporated in the control loop of the VSG. In this scheme, two steps have been implemented, where the first one is to categorize all states of the system using a super-twisting observer (STO) and further, it is required to converge essential states very quickly, exploiting a super-twisting controller (STC). Thus, the STO-STC controller reveals a finite-time convergence to the numerous frequency disturbances, based on various case studies. The performance of the controller has been examined in the MATLAB environment with time–domain results that corroborate the satisfactory performance of the STO-STC scheme and that illustrate eminence over the state of the art.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3