Exploring Inhibition Mechanism of Si on Cementite Nucleation in Hypereutectoid Steel: Experiments and First-Principles Calculations

Author:

Xu Taixu12,He Zhijun12,Han Xiao12,Yang Xin12,Hou Xinmei13ORCID

Affiliation:

1. School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China

2. Key Laboratory of Green Low-Carbon and Intelligent Metallurgy Liaoning Province, University of Science and Technology Liaoning, Anshan 114051, China

3. Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China

Abstract

To clarify the influence of Si on cementite nucleation during the solidification of hypereutectoid steel, the types and microstructure of cementite in hypereutectoid steel with various Si concentrations were investigated by X-ray diffraction and scanning electron microscopy. Additionally, the interfacial properties of γ-Fe/Fe3C were studied using the first-principles density functional theory, including work on adhesion, interfacial energy, and electronic structure, with the aim of elucidating the impact mechanism of Si on the cementite nucleation. The results showed that increasing Si concentrations (0–0.42 wt.%) had a negligible effect on the types of cementite in as-cast hypereutectoid steel. However, the average number of cementite lamellae per unit area decreased significantly, indicating that an increase in Si concentrations has an inhibitory effect on cementite nucleation. This can be attributed to the effect of Si on the interfacial properties of γ-Fe (010)/Fe3C (010), where the presence of Si disrupts the charge distribution of the γ-Fe (010)/Fe3C (010) interface and decreases the hybridization of atom orbits on each side of the interface, resulting in a decrease in the interatomic interaction force. This is reflected in the decrease in the work of adhesion (from 6.92 J·m−2 to 6.78 J·m−2) and the increase in the interfacial energy (from −1.42 J·m−2 to −1.31 J·m−2). As a result, the stability of the γ-Fe (010)/Fe3C (010) interface is reduced, making it difficult for the composite structure to form. This indicates that Si doping inhibits cementite nucleation on austenite.

Funder

National Natural Science Foundation of China

Liaoning Province’s “Rejuvenating Liaoning Talents Plan”

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3