The Effect of Homogenization Heat Treatment on 316L Stainless Steel Cast Billet

Author:

Chu Hung-Yang1,Shiue Ren-Kae1ORCID,Cheng Sheng-Yuan2

Affiliation:

1. Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan

2. Stainless Steel Business Group, Walsin Lihwa Co., Tainan City 73743, Taiwan

Abstract

This investigation aims to analyze the effect of homogenization heat treatment at 1240 °C for 2 and 6 h on the hardness, distribution, morphology, and chemical composition of the δ-ferrite and sigma phases in 316L stainless steel cast billet. A field emission scanning electron microscope, combined with electron back-scattered diffraction, a field emission electron probe microanalyzer with a wavelength dispersive spectrometer, and a Vickers microhardness tester are applied to identify various phase evolutions in the cast billet. The morphology of the δ-ferrite and sigma phases in the austenite matrix of the 316L cast billet are strongly related to the subsequent hot and cold wire drawings. The homogenization heat treatment is expected to provide a driving force to form spheroid interdendritic δ-ferrite and to minimize the amount of the brittle sigma intermetallic compound in the austenite matrix. The homogenization heat treatment at 1240 °C effectively spheroidized all δ-ferrites into blunt ones in the cast billet. The transformation of δ-ferrite into sigma is dominated by temperature and cooling rate. The fast air cooling after homogenization between 1240 and 850 °C retards the precipitation of the sigma in the δ-ferrite. There are two δ-ferrite transformation mechanisms in this experiment. The direct transformation of the δ-ferrite into sigma is observed in the as-cast 316L stainless steel billet. In contrast, the eutectoid transformation of the δ-ferrite into the sigma and austenite dominates the 316L cast billet homogenized at 1240 °C, with a slow furnace cooling rate.

Funder

Walsin Lihwa Corporation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3