Gas-Sensing Properties and Mechanisms of 3D Networks Composed of ZnO Tetrapod Micro-Nano Structures at Room Temperature

Author:

Hu Jinjiang123ORCID,Ma Hong2,Zhou Yang2,Ma Liyong2ORCID,Zhao Shuyin2,Shi Shuzheng2,Li Jirong2,Chang Yongqin1

Affiliation:

1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Department of Mathematics and Physics, Hebei University of Architecture, Zhangjiakou 075000, China

3. Zhangjiakou Smart Control Technology Innovation Center, Zhangjiakou 075000, China

Abstract

Metal oxide semiconductors (MOSs) hold great promise for electronic devices such as gas sensors. The utilization of ZnO as a conductometric gas sensor material can be traced back to its early stages; however, its application has primarily been limited to high-temperature environments. A gas sensor based on highly porous and interconnected 3D networks of ZnO tetrapod (ZnO-T) micro-nano structures was fabricated via an easy chemical vapor deposition (CVD) method. Homemade instruments were utilized to evaluate the gas-sensing of the sample at room temperature. It exhibited good gas-sensing at room temperature, particularly with a response of up to 338.80% toward 1600 ppm ethanol, while also demonstrating remarkable repeatability, stability, and selectivity. Moreover, the unique gas-sensing properties of ZnO-T at room temperature can be reasonably explained by considering the effect of van der Waals forces in physical adsorption and the synergistic effect of carrier concentration and mobility. The aforementioned statement presents an opportunity for the advancement of gas sensors utilizing ZnO at room temperature.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Basic Research Funding for Higher Education Institutions in Hebei Province

Academic Team Innovation Ability Improvement Project of Hebei University of Architecture

Innovation and Entrepreneurship Training Program for College Students of Hebei University of Architecture

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3