Abstract
In acoustic receiver design, the receiving sensitivity and bandwidth are two primary parameters that determine the performance of a device. The trade-off between sensitivity and bandwidth makes the design very challenging, meaning it needs to be fine-tuned to suit specific applications. The ability to design a PMUT with high receiving sensitivity and a wide bandwidth is crucial to allow a wide spectrum of transmitted frequencies to be efficiently received. This paper presents a novel structure involving a double flexural membrane with a fluidic backing layer based on an in-plane polarization mode to optimize both the receiving sensitivity and frequency bandwidth for medium-range underwater acoustic applications. In this structure, the membrane material and electrode configuration are optimized to produce good receiving sensitivity. Simultaneously, a fluidic backing layer is introduced into the double flexural membrane to increase the bandwidth. Several piezoelectric membrane materials and various electrode dimensions were simulated using finite element analysis (FEA) techniques to study the receiving performance of the proposed structure. The final structure was then fabricated based on the findings from the simulation work. The pulse–echo experimental method was used to characterize and verify the performance of the proposed device. The proposed structure was found to have an improved bandwidth of 56.6% with a receiving sensitivity of −1.8864 dB rel 1 V µPa. For the proposed device, the resonance frequency and center frequency were 600 and 662.5 kHz, respectively, indicating its suitability for the targeted frequency range.
Funder
Top Down Research University Grant Universiti Sains Malaysia
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献