Affiliation:
1. College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
Abstract
Changes in operating conditions often cause the distribution of signal features to shift during the bearing fault diagnosis process, which will result in reduced diagnostic accuracy of the model. Therefore, this paper proposes a dual-channel parallel adversarial network (DPAN) based on vision transformer, which extracts features from acoustic and vibration signals through parallel networks and enhances feature robustness through adversarial training during the feature fusion process. In addition, the Wasserstein distance is used to reduce domain differences in the fused features, thereby enhancing the network’s generalization ability. Two sets of bearing fault diagnosis experiments were conducted to validate the effectiveness of the proposed method. The experimental results show that the proposed method achieves higher diagnostic accuracy compared to other methods. The diagnostic accuracy of the proposed method can exceed 98%.
Funder
National Natural Science Foundation of China