The Value of a Comprehensive Genomic Evaluation in Prenatal Diagnosis of Genetic Diseases: A Retrospective Study

Author:

Fu Fang,Li Ru,Yu Qiu-Xia,Dang Xiao,Yan Shu-Juan,Zhou HangORCID,Cheng KenORCID,Huang Rui-BinORCID,Wang YouORCID,Zhang Yong-Ling,Jing Xiang-Yi,Zhang Li-Na,Li Dong-Zhi,Liao Can

Abstract

Currently, there are still many challenges in prenatal diagnosis, such as limited or uncertain fetal phenotyping, variant interpretation, and rapid turnaround times. The aim of this study was to illustrate the value of a comprehensive genomic evaluation in prenatal diagnosis. We retrospectively reviewed 20 fetuses with clinically significant copy number variants (CNVs) detected by chromosomal microarray analysis (CMA) and no further exome sequencing testing in our tertiary center between 2019 and 2020. The residual DNA from the prenatal cases was used for the parallel implementation of CNV sequencing (CNV-seq) and trio-based clinical exome sequencing (trio-CES). CMA revealed 26 clinically significant CNVs (18 deletions and eight duplications) in 20 fetuses, in which five fetuses had two or more CNVs. There were eight fetuses with pathogenic CNVs (e.g., del 1p36), nine fetuses with likely pathogenic CNVs (e.g., dup 22q11.21), and three fetuses with variants of unknown significance (VOUS, e.g., dup 1q21.1q21.2). Trio-CES identified four fetuses with likely pathogenic mutations (SNV/InDels). Of note, a fetus was detected with a maternally inherited hemizygous variant in the SLX4 gene due to a 16p13.3 deletion on the paternal chromosome. The sizes of CNVs detected by CNV-seq were slightly larger than that of the SNP array, and four cases with mosaic CNVs were all identified by CNV-seq. In conclusion, microdeletion/duplication syndromes and monogenic disorders may co-exist in a subject, and CNV deletion may contribute to uncovering additional recessive disease alleles. The application of a comprehensive genomic evaluation (CNVs and SNV/InDels) has great value in the prenatal diagnosis arena. CNV-seq based on NGS technology is a reliable and a cost-effective technique for identifying CNVs.

Funder

Subproject of the National Key R&D Program

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3