Identification of Liver Fibrosis-Related MicroRNAs in Human Primary Hepatic Stellate Cells Using High-Throughput Sequencing

Author:

Liu Xu,Ma Heming,Wu Ruihong,Wang Huan,Xu Hongqin,Li Shuxuan,Wang Guangyi,Lv Guoyue,Niu Junqi

Abstract

MicroRNAs (miRNAs) participate in hepatic stellate cell (HSC) activation, which drives liver fibrosis initiation and progression. We aimed to identify novel hepatic fibrosis targets using miRNA sequencing (miRNA-seq) of human primary HSCs. Surgically resected liver tissues were used to extract HSCs. Based on next-generation sequencing, miRNA-seq was performed on four pairs of HSCs before and after in vitro culture. Additionally, we compared our data with open access miRNA-seq data derived from fourteen cirrhotic and nine healthy liver tissues. Selected miRNAs associated with fibrosis were verified by quantitative real-time PCR. Target mRNAs of differentially expressed (DE) miRNAs were predicted to construct co-expression networks. We identified 230 DEmiRNAs (118 upregulated and 112 downregulated) upon HSC activation. Of the 17 miRNAs with the most significant differences in expression, liver disease-related miRNAs included miR-758-3p, miR-493-5p, miR-409-3p, miR-31-5p, miR-1268a, and miR-381-3p, which might play roles in hepatic fibrosis. Moreover, let-7g-5p, miR-107, miR-122-5p, miR-127-3p, miR-139-5p, miR-148a-3p, miR-194-5p, miR-215-5p, miR-26a-5p, miR-340-5p, miR-451a, and miR-99a-5p were common between our data and the publicly available sequencing data. A co-expression network comprising 1891 matched miRNA–mRNA pairs representing 138 DEmiRNAs and 1414 DEmRNAs was constructed. MiR-1268a and miR-665, possessing the richest target DEmRNAs, may be vital in HSC activation. The targeted genes were involved in collagen metabolism, extracellular matrix structural constituent, cytoskeletal protein binding, and cell adhesion. The miRNAs we identified may provide a basis and reference for the selection of diagnostic and therapeutic targets for hepatic fibrosis.

Funder

National Natural Science Foundation of China

Program for JLU Science and Technology Innovative Research Team

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3