Biomarker Discovery for Meta-Classification of Melanoma Metastatic Progression Using Transfer Learning

Author:

Miñoza Jose Marie AntonioORCID,Rico Jonathan AdamORCID,Zamora Pia Regina Fatima,Bacolod MannyORCID,Laubenbacher Reinhard,Dumancas Gerard G.ORCID,de Castro Romulo

Abstract

Melanoma is considered to be the most serious and aggressive type of skin cancer, and metastasis appears to be the most important factor in its prognosis. Herein, we developed a transfer learning-based biomarker discovery model that could aid in the diagnosis and prognosis of this disease. After applying it to the ensemble machine learning model, results revealed that the genes found were consistent with those found using other methodologies previously applied to the same TCGA (The Cancer Genome Atlas) data set. Further novel biomarkers were also found. Our ensemble model achieved an AUC of 0.9861, an accuracy of 91.05, and an F1 score of 90.60 using an independent validation data set. This study was able to identify potential genes for diagnostic classification (C7 and GRIK5) and diagnostic and prognostic biomarkers (S100A7, S100A7, KRT14, KRT17, KRT6B, KRTDAP, SERPINB4, TSHR, PVRL4, WFDC5, IL20RB) in melanoma. The results show the utility of a transfer learning approach for biomarker discovery in melanoma.

Funder

University of San Agustin

3R Biosystems

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Reference73 articles.

1. A Multigene Support Vector Machine Predictor for Metastasis of Cutaneous Melanoma;Wei;Mol. Med. Rep.,2018

2. A Six-Long Non-Coding RNA Signature Predicts Prognosis in Melanoma Patients;Yang;Int. J. Oncol.,2018

3. How to Make a Melanoma: What Do We Know of the Primary Clonal Events?;Bennett;Pigment Cell Melanoma Res.,2008

4. Melanoma Biology and New Targeted Therapy;Wellbrock;Nature,2007

5. Melanoma;Miller;N. Engl. J. Med.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3