Author:
Xu Songzhi,Zhang Zhiyao,Zhou Jiajing,Han Xiao,Song Kun,Gu Haiying,Zhu Suqin,Sun Lijun
Abstract
NAC (NAM/ATAF/CUC) transcription factors belong to a unique gene family in plants, which play vital roles in regulating diverse biological processes, including growth, development, senescence, and in response to biotic and abiotic stresses. Tomato (Solanum lycopersicum), as the most highly valued vegetable and fruit crop worldwide, is constantly attacked by Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), causing huge losses in production. Thus, it is essential to conduct a comprehensive identification of the SlNAC genes involved in response to Pst DC3000 in tomato. In this study, a complete overview of this gene family in tomato is presented, including genome localization, protein domain architectures, physical and chemical features, and nuclear location score. Phylogenetic analysis identified 20 SlNAC genes as putative stress-responsive genes, named SSlNAC 1–20. Expression profiles analysis revealed that 18 of these 20 SSlNAC genes were significantly induced in defense response to Pst DC3000 stress. Furthermore, the RNA-seq data were mined and analyzed, and the results revealed the expression pattern of the 20 SSlNAC genes in response to Pst DC3000 during the PTI and ETI. Among them, SSlNAC3, SSlNAC4, SSlNAC7, SSlNAC8, SSlNAC12, SSlNAC17, and SSlNAC19 were up-regulated against Pst DC3000 during PTI and ETI, which suggested that these genes may participate in both the PTI and ETI pathway during the interaction between tomato and Pst DC3000. In addition, SSlNAC genes induced by exogenous hormones, including indole-3-acetic acid (IAA), abscisic acid (ABA), salicylic acid (SA), and methyl jasmonic acid (MeJA), were also recovered. These results implied that SSlNAC genes may participate in the Pst DC3000 stress response by multiple regulatory pathways of the phytohormones. In all, this study provides important clues for further functional analysis and of the regulatory mechanism of SSlNAC genes under Pst DC3000 stress.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Project of Nantong Natural Science Foundation
Subject
Genetics (clinical),Genetics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献