Identification and Characterization of the HD-Zip Gene Family and Dimerization Analysis of HB7 and HB12 in Brassica napus L.

Author:

Peng Xiangyong,Wu Di,Zhang Xin,Liu Qingwei,Lu Qiuli,Song Min

Abstract

Homeodomain-leucine zipper (HD-Zip) genes encode plant-specific transcription factors, which play important roles in plant growth, development, and response to environmental stress. These genes have not been fully studied in allopolyploid Brassica napus, an important kind of oil crop. In this study, 165 HD-Zip genes were identified in B. napus and classified into four subfamilies. If proteins belong to the same subfamily, they exhibit similarities in gene structure, motifs, and domain distribution patterns. BnHD-Zip genes were unevenly distributed in the An and Cn subgenomes. Whole genome triplication (WGT) events may be major mechanisms accounting for this gene family expansion. Orthologous gene analysis showed that the process of this gene family expansion was accompanied by domain loss. We further found three genes homologous to HB7 and three genes homologous to HB12, all induced by PEG, ABA, and NaCl treatment. HB7 could not form homodimers but could form heterodimers with HB12 based on yeast two-hybrid assays. The results of this study provide valuable information for further exploration of the HD-Zip gene family in B. napus.

Funder

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3