A Novel Strategy for Constructing an Integrated Linkage Map in an F1 Hybrid Population of Populus deltoides and Populus simonii

Author:

Li Zhiting,Zhang Jinpeng,Pan Zhiliang,Bai Shengjun,Tong ChunfaORCID

Abstract

The genetic linkage maps of the traditional F2 population in inbred lines were estimated from the frequency of recombination events in both parents, providing full genetic information for genetic and genomic studies. However, in outbred forest trees, it is almost impossible to generate the F2 population because of their high heterozygosity and long generation times. We proposed a novel strategy to construct an integrated genetic linkage map that contained both parental recombination information, with restriction-site-associated DNA sequencing (RADSeq) data in an F1 hybrid population of Populus deltoides and Populus simonii. We selected a large number of specific RAD tags to construct the linkage map, each of which contained two SNPs, one heterozygous only in the female parent and the other heterozygous only in the male. Consequently, the integrated map contained a total of 1154 RAD tags and 19 linkage groups, with a total length of 5255.49 cM and an average genetic distance of 4.63 cM. Meanwhile, the two parent-specific linkage maps were also constructed with SNPs that were heterozygous in one parent and homozygous in the other. We found that the integrated linkage map was more consensus with the genomic sequences of P. simonii and P. deltoides. Additionally, the likelihood of the marker order in each linkage group of the integrated map was greater than that in both parental maps. The integrated linkage map was more accurate than the parent-specific linkage maps constructed in the same F1 hybrid population, providing a powerful genetic resource for identifying the quantitative trait loci (QTLs) with dominant effects, assembling genomic sequences, and performing comparative genomics in related Populus species. More importantly, this novel strategy can be used in other outbred species to build an integrated linkage map.

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3