A Genome-Wide Scan Divulges Key Loci Involved in Resistance to Aphids (Aphis craccivora) in Cowpea (Vigna unguiculata)

Author:

Ongom Patrick ObiaORCID,Togola Abou,Fatokun Christian,Boukar OusmaneORCID

Abstract

Cowpea aphids (Aphis craccivora Koch) double as a direct damaging pest and a virus vector to cowpea, threatening the economic yield of the crop. Given the multiple ecotypes, different alleles have been implicated in aphid resistance, necessitating the identification of key genes involved. The present study implemented a genome-wide scan using 365 cowpea mini-core accessions to decipher loci involved in resistance to aphid ecotype from Kano, Nigeria. Accessions were artificially inoculated with A. craccivora in insect-proof cages and damage severity assessed at 21 days after infestation. Significant phenotypic differences based on aphid damage severity were registered among the accessions. Skewed phenotypic distributions were depicted in the population, suggesting the involvement of major genes in the control of resistance. A genome-wide scan identified three major regions on chromosomes Vu10, Vu08 and Vu02, and two minor ones on chromosomes Vu01 and Vu06, that were significantly associated with aphid resistance. These regions harbored several genes, out of which, five viz Vigun01g233100.1, Vigun02g088900.1, Vigun06g224900.1, Vigun08g030200.1 and Vigun10g031100.1 were the most proximal to the peak single nucleotide polymorphisms (SNPs) positions. These genes are expressed under stress signaling, mechanical wounding and insect feeding. The uncovered loci contribute towards establishing a marker-assisted breeding platform and building durable resistance against aphids in cowpea.

Funder

Bill and Melinda Gates foundation through the Accelerated Varietal Improvement

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3