Cloning and Functional Characterization of SpZIP2

Author:

Han Tian-Long,Tang Ting-Wei,Zhang Pei-Hong,Liu Min,Zhao Jing,Peng Jia-ShiORCID,Meng Shuan

Abstract

Zinc (Zn)-regulated and iron (Fe)-regulated transporter-like proteins (ZIP) are key players involved in the accumulation of cadmium (Cd) and Zn in plants. Sedum plumbizincicola X.H. Guo et S.B. Zhou ex L.H. Wu (S. plumbizincicola) is a Crassulaceae Cd/Zn hyperaccumulator found in China, but the role of ZIPs in S. plumbizincicola remains largely unexplored. Here, we identified 12 members of ZIP family genes by transcriptome analysis in S. plumbizincicola and cloned the SpZIP2 gene with functional analysis. The expression of SpZIP2 in roots was higher than that in the shoots, and Cd stress significantly decreased its expression in the roots but increased its expression in leaves. Protein sequence characteristics and structural analysis showed that the content of alanine and leucine residues in the SpZIP2 sequence was higher than other residues, and several serine, threonine and tyrosine sites can be phosphorylated. Transmembrane domain analysis showed that SpZIP2 has the classic eight transmembrane regions. The evolutionary analysis found that SpZIP2 is closely related to OsZIP2, followed by AtZIP11, OsZIP1 and AtZIP2. Sequence alignment showed that most of the conserved sequences among these members were located in the transmembrane regions. A further metal sensitivity assay using yeast mutant Δyap1 showed that the expression of SpZIP2 increased the sensitivity of the transformants to Cd but failed to change the resistance to Zn. The subsequent ion content determination showed that the expression of SpZIP2 increased the accumulation of Cd in yeast. Subcellular localization showed that SpZIP2 was localized to membrane systems, including the plasma membrane and endoplasmic reticulum. The above results indicate that ZIP member SpZIP2 participates in the uptake and accumulation of Cd into cells and might contribute to Cd hyperaccumulation in S. plumbizincicola.

Funder

National Natural Science Foundation of China

Scientific Research Fund of Hunan Provincial Education Department

Hunan Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3