HPRT1 Most Suitable Reference Gene for Accurate Normalization of mRNA Expression in Canine Dermal Tissues with Radiation Therapy

Author:

Lee Sang-YunORCID,Choe Yong-Ho,Han Jang-HoORCID,Hwang Gunha,Choi Moon-Yeong,Thakur GitikaORCID,Jo Chan-Hee,Oh Seong-Ju,Lee Won-Jae,Rho Gyu-Jin,Lee Sung-LimORCID,Hwang Tae-Sung

Abstract

Reference genes are crucial in molecular biological studies as an internal control for gene re-search as they exhibit consistent expression patterns across many tissue types. In canines, radiation therapy is the most important therapeutic tool to cure various diseases like cancer. However, when using radiation for therapeutic strategy, radiation exposure to healthy tissues leads to some possible side effects such as acute radiation-induced skin injury and alters gene expression. Therefore, the analysis of a change in reference gene expression during the skin recovery process after radiation therapy is essential in healthy canine tissue. In the present study, we analyzed eight reference genes (ACTB, GAPDH, YWHAZ, GUSB, HPRT1, RPL4, RPS5, and TBP) in canine dermal tissues at 0, 1, 2, 3, 4, 5, 7, and 9 weeks of radiation exposure that affected the skin condition of canines. The stability of reference genes is determined by evaluating radiation therapy’s effect on healthy canine dermal tissue. Epidermal marker, Keratin 10 expression varies each week after irradiation, and HPRT1 is found to be the most suitable for normalization of mRNA expression in radiation-exposed canine dermal tissues. Changes in the gene expression level were evaluated by using a reliable tool such as quantitative real-time polymerase chain reaction (qRT-PCR). In order to achieve a valid qRT-PCR result, the most stable reference genes used for normalization after the radiation exposure process are important. Therefore, the current study was designed to evaluate the most stable reference gene for the post-irradiation canine tissues. After radiation exposure, the alternation of reference gene expression was estimated by three algorithms (geNorm, Normfinder, and Bestkeeper). The RG validation programs (GeNorm and NormFinder) suggested that HPRT1, RPL4, and TBP were suitable for normalization in qRT-PCR. Furthermore, three algorithms suggested that HPRT1 was the most stable reference gene for normalization with qRT-PCR results, regardless of before and after radiation exposure. Whereas GAPDH was found to be the most unstable reference gene. In addition, the use of stable or unstable reference genes for the normalization of Keratin 10 expression showed statistical differences. Therefore, we observed that, to obtain accurate and suitable PCR results of the canine tissues with and without radiation exposure, the HPRT1 reference gene is recommended for normalization with its high stability. Additionally, the use of RGs such as HPRT1, RPL4, and TBP for normalization in qRT-PCR experiments is recommended for post-radiation canine tissues to generate more accurate and reliable data. These results will provide fundamental information regarding internal controls for gene expression studies and can be used for the analysis of gene patterns in regenerative medicine.

Funder

National Research Foundation of Korea

RDA, Republic of Korea

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3