Genetic Diversity and Population Structure Analysis of Castanopsis hystrix and Construction of a Core Collection Using Phenotypic Traits and Molecular Markers

Author:

Li Na,Yang Yuanmu,Xu Fang,Chen Xinyu,Wei Ruiyan,Li Ziyue,Pan Wen,Zhang Weihua

Abstract

Castanopsis hystrix is a valuable native, broad-leaved, and fast-growing tree in South China. In this study, 15 phenotypic traits and 32 simple sequence repeat (SSR) markers were used to assess the genetic diversity and population structure of a natural population of C. hystrix and to construct a core germplasm collection by a set of 232 accessions. The results showed that the original population of C. hystrix had relatively high genetic diversity, with the number of alleles (Na), effective number of alleles (Ne), observed heterozygosity (Ho), expected heterozygosity (He), Shannon’s information index (I), and polymorphism information content (PIC) averaging at 26.188, 11.565, 0.863, 0.897, 2.660, and 0.889, respectively. Three sub-populations were identified based on a STRUCTURE analysis, indicating a strong genetic structure. The results from the phylogenetic and population structures showed a high level of agreement, with 232 germplasms being classified into three main groups. The analysis of molecular variance (AMOVA) test indicated that 96% of the total variance was derived from within populations, which revealed a low differentiation among populations. A core collection composed of 157 germplasms was firstly constructed thereafter, of which the diversity parameters non-significantly differed from the original population. These results revealed the genetic diversity and population structure of C. hystrix germplasms, which have implications for germplasm management and genome-wide association studies on C. hystrix, as well as for core collection establishment applications in other wood-producing hardwood species.

Funder

Key Research and Development Program of the Guangdong Province

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3