Genome-Wide Identification and Expression Profiling of Heat Shock Protein 20 Gene Family in Sorbus pohuashanensis (Hance) Hedl under Abiotic Stress

Author:

Qi Xiangyu,Di Zexin,Li Yuyan,Zhang Zeren,Guo Miaomiao,Tong Boqiang,Lu YizengORCID,Zhang Yan,Zheng JianORCID

Abstract

Small heat shock proteins (HSP20s) are a significant factor in plant growth and development in response to abiotic stress. In this study, we investigated the role of HSP20s’ response to the heat stress of Sorbus pohuashanensis introduced into low-altitude areas. The HSP20 gene family was identified based on the genome-wide data of S. pohuashanensis, and the expression patterns of tissue specificity and the response to abiotic stresses were evaluated. Finally, we identified 38 HSP20 genes that were distributed on 16 chromosomes. Phylogenetic analysis of HSP20s showed that the closest genetic relationship to S. pohuashanensis (SpHSP20s) is Malus domestica, followed by Populus trichocarpa and Arabidopsis thaliana. According to phylogenetic analysis and subcellular localization prediction, the 38 SpHSP20s belonged to 10 subfamilies. Analysis of the gene structure and conserved motifs indicated that HSP20 gene family members are relatively conserved. Synteny analysis showed that the expansion of the SpHSP20 gene family was mainly caused by segmental duplication. In addition, many cis-acting elements connected with growth and development, hormones, and stress responsiveness were found in the SpHSP20 promoter region. Analysis of expression patterns showed that these genes were closely related to high temperature, drought, salt, growth, and developmental processes. These results provide information and a theoretical basis for the exploration of HSP20 gene family resources, as well as the domestication and genetic improvement of S. pohuashanensis.

Funder

National Natural Science Foundation of China

Subject of Key R&D Plan of Shandong Province

Research Fund for Academic Degree and Graduate Education of Beijing University of Agriculture

Youth Science Fund Project of Beijing University of Agriculture

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3