Sex-Biased Expression of Olfaction-Related Genes in the Antennae of Apis cerana (Hymenoptera: Apidae)

Author:

Du Hanchao,Su WentingORCID,Huang JiaxingORCID,Ding GuilingORCID

Abstract

The olfactory system is essential for honeybees to adapt to complex and ever-changing environments and maintain cohesiveness. The Eastern honeybee Apis cerana is native to Asia and has a long history of managed beekeeping in China. In this study, we analysed the antennal transcriptomes of A. cerana workers and drones using Illumina sequencing. A total of 5262 differentially expressed genes (DEGs) (fold change > 2) were identified between these two castes, with 2359 upregulated and 2903 downregulated in drones compared with workers. We identified 242 candidate olfaction-related genes, including 15 odourant-binding proteins (OBPs), 5 chemosensory proteins (CSPs), 110 odourant receptors (ORs), 9 gustatory receptors (GRs), 8 ionotropic receptors (IRs), 2 sensory neuron membrane proteins (SNMPs) and 93 putative odourant-degrading enzymes (ODEs). More olfaction-related genes have worker-biased expression than drone-biased expression, with 26 genes being highly expressed in workers’ antennae and only 8 genes being highly expressed in drones’ antennae (FPKM > 30). Using real-time quantitative PCR (RT-qPCR), we verified the reliability of differential genes inferred by transcriptomics and compared the expression profiles of 6 ORs (AcOR10, AcOR11, AcOR13, AcOR18, AcOR79 and AcOR170) between workers and drones. These ORs were expressed at significantly higher levels in the antennae than in other tissues (p < 0.01). There were clear variations in the expression levels of all 6 ORs between differently aged workers and drones. The relative expression levels of AcOR10, AcOR11, AcOR13, AcOR18 and AcOR79 reached a high peak in 15-day-old drones. These results will contribute to future research on the olfaction mechanism of A. cerana and will help to better reveal the odourant reception variations between different biological castes of honeybees.

Funder

National Natural Science Foundation of China

the Agricultural Science and Technology Innovation Program of CAAS

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3