Characterization of Rice Yield Based on Biomass and SPAD-Based Leaf Nitrogen for Large Genotype Plots

Author:

Duque Andres F.1ORCID,Patino Diego1ORCID,Colorado Julian D.12ORCID,Petro Eliel3ORCID,Rebolledo Maria C.34ORCID,Mondragon Ivan F.1ORCID,Espinosa Natalia5ORCID,Amezquita Nelson5ORCID,Puentes Oscar D.5ORCID,Mendez Diego1ORCID,Jaramillo-Botero Andres26ORCID

Affiliation:

1. School of Engineering, Pontificia Universidad Javeriana Bogota, Cra. 7 No. 40-62, Bogota 110231, Colombia

2. The OMICAS Alliance, Pontificia Universidad Javeriana, Cali 760031, Colombia

3. The International Center for Tropical Agriculture CIAT, Km 17 Recta Cali–Palmira, Palmira 763537, Colombia

4. Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), AGAP-Pam, Avenue Agropolis, 34398 Montpellier, France

5. Fedearroz, Centro Experimental Las Lagunas, Km 4 Los Cairos, Tolima 730568, Colombia

6. Chemistry and Chemical Engineering Division, California Institute of Technology, Pasadena, CA 91125, USA

Abstract

The use of Unmanned Aerial Vehicle (UAV) images for biomass and nitrogen estimation offers multiple opportunities for improving rice yields. UAV images provide detailed, high-resolution visual information about vegetation properties, enabling the identification of phenotypic characteristics for selecting the best varieties, improving yield predictions, and supporting ecosystem monitoring and conservation efforts. In this study, an analysis of biomass and nitrogen is conducted on 59 rice plots selected at random from a more extensive trial comprising 400 rice genotypes. A UAV acquires multispectral reflectance channels across a rice field of subplots containing different genotypes. Based on the ground-truth data, yields are characterized for the 59 plots and correlated with the Vegetation Indices (VIs) calculated from the photogrammetric mapping. The VIs are weighted by the segmentation of the plants from the soil and used as a feature matrix to estimate, via machine learning models, the biomass and nitrogen of the selected rice genotypes. The genotype IR 93346 presented the highest yield with a biomass gain of 10,252.78 kg/ha and an average daily biomass gain above 49.92 g/day. The VIs with the highest correlations with the ground-truth variables were NDVI and SAVI for wet biomass, GNDVI and NDVI for dry biomass, GNDVI and SAVI for height, and NDVI and ARVI for nitrogen. The machine learning model that performed best in estimating the variables of the 59 plots was the Gaussian Process Regression (GPR) model with a correlation factor of 0.98 for wet biomass, 0.99 for dry biomass, and 1 for nitrogen. The results presented demonstrate that it is possible to characterize the yields of rice plots containing different genotypes through ground-truth data and VIs.

Funder

Optimización Multiescala In-silico de Cultivos Agrícolas Sostenibles

Colombian Scientific Ecosystem by The World Bank

Colombian Ministry of Science; Technology, and Innovation

Colombian Ministry of Education

Colombian Ministry of Industry and Tourism

ICETEX

OMICAS

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference51 articles.

1. Climate change favors rice production at higher elevations in Colombia;Hyman;Mitig. Adapt. Strateg. Glob. Chang.,2019

2. Characterization of the phenotypic variability in Colombian weedy rice (Oryza spp.);Hoyos;Weed Sci.,2019

3. Closing yield gaps in colombian direct seeding rice systems: A stochastic frontier analysis;Jarvis;Agron. Colomb.,2020

4. Kitagenki, a high-yielding rice variety, exhibits a high yield potential under optimum crop management practices;Yagioka;Eur. J. Agron.,2022

5. Determination of Paddy Rice Yield in the Context of Farmers’ Adoption of Multiple Technologies in Colombia;Nguyen;Int. J. Plant Prod.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3