Nonlinear Impact of Topological Configuration of Coupled Inverter-Based Resources on Interaction Harmonics Levels of Power Flow

Author:

Safarishaal Masoud1,Hemmati Rasul1,Saeed Kandezy Reza1ORCID,Jiang John N.1,Lin Chenxi2,Wu Di3

Affiliation:

1. School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA

2. Energy & Power, Jacobs Engineering Group, Orlando, FL 32801, USA

3. Electrical and Computer Engineering Department, North Dakota State University, Fargo, ND 58105, USA

Abstract

The increasing level of harmonics in the power grid, driven by a substantial presence of coupled inverter-based energy resources (IBRs), poses a new challenge to power grid transient stability. This paper presents the findings from experiments and analytical studies on the impact of the topological configuration of coupled IBRs on the level of power flow harmonics in a distribution grid: (i) our findings report that the impact of grid topology on harmonics is nonlinear, which is in contrast to the common perception that the power grid operates as a large linear low-pass filter for harmonics; (ii) importantly, this study highlights that the influence of the topological configuration of inverters on the reduction of system-level harmonics is more substantial than the effect of line impedance, emphasizing the significance of grid topological configuration; (iii) furthermore, the observed reduction in harmonics is attributed to a harmonic cancellation effect achieved through self-compensation by all the coupled inverters without affecting the active power flow in the power grid. These findings propose a new approach to limit the penetration of complex IBR harmonics in the power grid from a system-wide perspective. This approach significantly differs from the component-level or localized solutions used today, such as inverter control, power filtering, and transformer tap changes.

Funder

National Science Foundation (NSF) EPSCoR RII Track-2 Program

Publisher

MDPI AG

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3