Harvesting Electric Energy Using Thermoelectric Generators in a Residential Heating Application

Author:

Chukwurah Ugochukwu1ORCID,McTaggart-Cowan Gordon1ORCID

Affiliation:

1. School of Sustainable Energy Engineering, Simon Fraser University, Surrey, BC V3T 0N1, Canada

Abstract

Biomass combustors provide space heating by converting chemical energy in woody biomass into low-temperature thermal energy. Thermoelectric generators (TEGs) can generate electricity from the heat flux without significantly reducing heating performance. However, most current TEGs are small (40 mm × 40 mm), requiring many TEG elements to generate useful power from a biomass combustion-based space heater. This work compares the electrical generation potential of an array of small TEGs with a larger (80 mm × 120 mm) TEG in a vertical configuration representative of a residential heating appliance. An experimental facility was developed for various representative cold-side ducts and controllable hot-side temperature and cooling airflows, and the Taguchi method was used to evaluate the impacts of temperature, airspeed, and ducting configurations. The results indicate that temperature and airspeed significantly influence TEG power, while ducting configurations have an insignificant influence. The large TEG achieved more consistent temperatures but produced lower power than an array of smaller TEGs with the same total area. The study emphasizes optimizing TEG design and operating conditions to enhance electricity generation efficiency in space heating combustors.

Funder

Mitacs Accelerate

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3