Ensemble Learning Approaches Based on Covariance Pooling of CNN Features for High Resolution Remote Sensing Scene Classification

Author:

Akodad Sara,Bombrun LionelORCID,Xia Junshi,Berthoumieu Yannick,Germain ChristianORCID

Abstract

Remote sensing image scene classification, which consists of labeling remote sensing images with a set of categories based on their content, has received remarkable attention for many applications such as land use mapping. Standard approaches are based on the multi-layer representation of first-order convolutional neural network (CNN) features. However, second-order CNNs have recently been shown to outperform traditional first-order CNNs for many computer vision tasks. Hence, the aim of this paper is to show the use of second-order statistics of CNN features for remote sensing scene classification. This takes the form of covariance matrices computed locally or globally on the output of a CNN. However, these datapoints do not lie in an Euclidean space but a Riemannian manifold. To manipulate them, Euclidean tools are not adapted. Other metrics should be considered such as the log-Euclidean one. This consists of projecting the set of covariance matrices on a tangent space defined at a reference point. In this tangent plane, which is a vector space, conventional machine learning algorithms can be considered, such as the Fisher vector encoding or SVM classifier. Based on this log-Euclidean framework, we propose a novel transfer learning approach composed of two hybrid architectures based on covariance pooling of CNN features, the first is local and the second is global. They rely on the extraction of features from models pre-trained on the ImageNet dataset processed with some machine learning algorithms. The first hybrid architecture consists of an ensemble learning approach with the log-Euclidean Fisher vector encoding of region covariance matrices computed locally on the first layers of a CNN. The second one concerns an ensemble learning approach based on the covariance pooling of CNN features extracted globally from the deepest layers. These two ensemble learning approaches are then combined together based on the strategy of the most diverse ensembles. For validation and comparison purposes, the proposed approach is tested on various challenging remote sensing datasets. Experimental results exhibit a significant gain of approximately 2% in overall accuracy for the proposed approach compared to a similar state-of-the-art method based on covariance pooling of CNN features (on the UC Merced dataset).

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MS3Net: a deep ensemble learning approach for ship classification in heterogeneous remote sensing data;International Journal of Remote Sensing;2024-01-29

2. A Gaussian mixture model with multiple tangent planes;2023 31st European Signal Processing Conference (EUSIPCO);2023-09-04

3. Remote sensing image scene classification based on a dual attention dense network;5th International Conference on Information Science, Electrical, and Automation Engineering (ISEAE 2023);2023-08-10

4. Transfer Learning Based Convolutional Neural Network for Classification of Remote Sensing Images;Advances in Electrical and Computer Engineering;2023

5. Classification of Indoor–Outdoor Scene Using Deep Learning Techniques;Lecture Notes in Electrical Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3