Train Delay Predictions Using Markov Chains Based on Process Time Deviations and Elastic State Boundaries

Author:

Spanninger Thomas1ORCID,Büchel Beda1ORCID,Corman Francesco1ORCID

Affiliation:

1. Institute for Transport Planning and Systems (IVT), ETH Zurich, Stefano-Franscini-Platz 5, 8093 Zurich, Switzerland

Abstract

Train delays are inconvenient for passengers and major problems in railway operations. When delays occur, it is vital to provide timely information to passengers regarding delays at their departing, interchanging, and final stations. Furthermore, real-time traffic control requires information on how delays propagate throughout the network. Among a multitude of applied models to predict train delays, Markov chains have proven to be stochastic benchmark approaches due to their simplicity, interpretability, and solid performances. In this study, we introduce an advanced Markov chain setting to predict train delays using historical train operation data. Therefore, we applied Markov chains based on process time deviations instead of absolute delays and we relaxed commonly used stationarity assumptions for transition probabilities in terms of direction, train line, and location. Additionally, we defined the state space elastically and analyzed the benefit of an increasing state space dimension. We show (via a test case in the Swiss railway network) that our proposed advanced Markov chain model achieves a prediction accuracy gain of 56% in terms of mean absolute error (MAE) compared to state-of-the-art Markov chain models based on absolute delays. We also illustrate the prediction performance advantages of our proposed model in the case of training data sparsity.

Funder

Swiss National Science Foundation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3