Remote Sensing Imagery Object Detection Model Compression via Tucker Decomposition

Author:

Huyan Lang12ORCID,Li Ying1,Jiang Dongmei1,Zhang Yanning1,Zhou Quan1,Li Bo2,Wei Jiayuan2,Liu Juanni2,Zhang Yi2,Wang Peng2,Fang Hai2

Affiliation:

1. School of Computer Science, National Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology, Shaanxi Provincial Key Laboratory of Speech & Image Information Processing, Northwestern Polytechnical University, Xi’an 710129, China

2. Key Laboratory of Science and Technology on Space Microwave, CAST Xi’an, Xi’an 710100, China

Abstract

Although convolutional neural networks (CNNs) have made significant progress, their deployment onboard is still challenging because of their complexity and high processing cost. Tensors provide a natural and compact representation of CNN weights via suitable low-rank approximations. A novel decomposed module called DecomResnet based on Tucker decomposition was proposed to deploy a CNN object detection model on a satellite. We proposed a remote sensing image object detection model compression framework based on low-rank decomposition which consisted of four steps, namely (1) model initialization, (2) initial training, (3) decomposition of the trained model and reconstruction of the decomposed model, and (4) fine-tuning. To validate the performance of the decomposed model in our real mission, we constructed a dataset containing only two classes of objects based on the DOTA and HRSC2016. The proposed method was comprehensively evaluated on the NWPU VHR-10 dataset and the CAST-RS2 dataset created in this work. The experimental results demonstrated that the proposed method, which was based on Resnet-50, could achieve up to 4.44 times the compression ratio and 5.71 times the speedup ratio with merely a 1.9% decrease in the mAP (mean average precision) of the CAST-RS2 dataset and a 5.3% decrease the mAP of the NWPU VHR-10 dataset.

Funder

National Key R&D Program of China

the Innovation Foundation of CAST

National Key Laboratory Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3