Affiliation:
1. Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, 166 27 Prague, Czech Republic
Abstract
This study presents the results of the numerical modeling of surface dielectric barrier discharge in planar configuration with the strips active electrode. A positive half-period of the sinusoidal driving voltage and the two-species case is assumed in this study. Currently, many numerical models of surface dielectric barrier discharge deal with different electrode geometries, longer timescales, or discharge energizations. However, the main innovation presented in this study is developing a three-dimensional numerical model for the initial phase of the discharge phenomenon and a deeper focus on the numerical theory behind it. Based on the fluid model, this study presents a detailed mathematical and numerical formulation of the problem, stable numerical reconstruction of ion and electron velocity fields and an explanation of the need for linear approximation of ionization rate. Finally, it computes the potential and electric field distributions, electron and ion densities, and their velocities. The obtained results of a numerical simulation showing trajectories and velocities of electrons and ions reflect the active region of the discharge. A numerical simulation demonstrates the method in a three-dimensional domain inspired by a real-life experiment. The model can be used to optimize the electrode geometry of the discharge.
Funder
European Operational Program Research, Development, and Education CRREAT
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)