A Meta-Heuristic Multi-Objective Optimization Method for Alzheimer’s Disease Detection Based on Multi-Modal Data

Author:

Ismail Walaa N.12,P. P. Fathimathul Rajeena3ORCID,Ali Mona A. S.34ORCID

Affiliation:

1. Department of Management Information Systems, College of Business Administration, Al Yamamah University, Riyadh 11512, Saudi Arabia

2. Faculty of Computers and Information, Minia University, Minia 61519, Egypt

3. Computer Science Department, College of Computer Science and Information Technology, King Faisal University, Al Ahsa 400, Saudi Arabia

4. Computer Science, Faculty of Computers and Artificial Intelligence, Benha University, Al Qalyubia 13511, Egypt

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disease that affects a large number of people across the globe. Even though AD is one of the most commonly seen brain disorders, it is difficult to detect and it requires a categorical representation of features to differentiate similar patterns. Research into more complex problems, such as AD detection, frequently employs neural networks. Those approaches are regarded as well-understood and even sufficient by researchers and scientists without formal training in artificial intelligence. Thus, it is imperative to identify a method of detection that is fully automated and user-friendly to non-AI experts. The method should find efficient values for models’ design parameters promptly to simplify the neural network design process and subsequently democratize artificial intelligence. Further, multi-modal medical image fusion has richer modal features and a superior ability to represent information. A fusion image is formed by integrating relevant and complementary information from multiple input images to facilitate more accurate diagnosis and better treatment. This study presents a MultiAz-Net as a novel optimized ensemble-based deep neural network learning model that incorporate heterogeneous information from PET and MRI images to diagnose Alzheimer’s disease. Based on features extracted from the fused data, we propose an automated procedure for predicting the onset of AD at an early stage. Three steps are involved in the proposed architecture: image fusion, feature extraction, and classification. Additionally, the Multi-Objective Grasshopper Optimization Algorithm (MOGOA) is presented as a multi-objective optimization algorithm to optimize the layers of the MultiAz-Net. The desired objective functions are imposed to achieve this, and the design parameters are searched for corresponding values. The proposed deep ensemble model has been tested to perform four Alzheimer’s disease categorization tasks, three binary categorizations, and one multi-class categorization task by utilizing the publicly available Alzheimer neuroimaging dataset. The proposed method achieved (92.3 ± 5.45)% accuracy for the multi-class-classification task, significantly better than other network models that have been reported.

Funder

Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3