Multimodal Movie Recommendation System Using Deep Learning

Author:

Mu Yongheng12,Wu Yun1

Affiliation:

1. Hubei Key Laboratory of Intelligent Geo-Information Processing, College of Computer Science, China University of Geosciences, Wuhan 430078, China

2. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

Abstract

Recommendation systems, the best way to deal with information overload, are widely utilized to provide users with personalized content and services with high efficiency. Many recommendation algorithms have been researched and deployed extensively in various e-commerce applications, including the movie streaming services over the last decade. However, sparse data cold-start problems are often encountered in many movie recommendation systems. In this paper, we reported a personalized multimodal movie recommendation system based on multimodal data analysis and deep learning. The real-world MovieLens datasets were selected to test the effectiveness of our new recommendation algorithm. With the input information, the hidden features of the movies and the users were mined using deep learning to build a deep-learning network algorithm model for training to further predict movie scores. With a learning rate of 0.001, the root mean squared error (RMSE) scores achieved 0.9908 and 0.9096 for test sets of MovieLens 100 K and 1 M datasets, respectively. The scoring prediction results show improved accuracy after incorporating the potential features and connections in multimodal data with deep-learning technology. Compared with the traditional collaborative filtering algorithms, such as user-based collaborative filtering (User-CF), item-based content-based filtering (Item-CF), and singular-value decomposition (SVD) approaches, the multimodal movie recommendation system using deep learning could provide better personalized recommendation results. Meanwhile, the sparse data problem was alleviated to a certain degree. We suggest that the recommendation system can be improved through the combination of the deep-learning technology and the multimodal data analysis.

Funder

Open Research Project of The Hubei Key Laboratory of Intelligent Geo-Information Processing

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference35 articles.

1. Brand Choice Behavior as a Function of Information Load: Replication and Extension;Jacoby;J. Consum. Res.,1974

2. Schwartz, B. (2004). The Paradox of Choice: Why More is Less, HarperCollins Publishers.

3. The Effects of Information Overload on Consumers’ Subjective State Towards Buying Decision in the Internet Shopping Environment;Chen;Electron. Commer. Res. Appl.,2009

4. Recommender Systems;Resnick;Commun. ACM,1997

5. Recommendation Systems: Principles, Methods and Evaluation;Isinkaye;Egypt. Inform. J.,2015

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3