Local Correlation Integral Approach for Anomaly Detection Using Functional Data

Author:

Sosa Donoso Jorge1,Flores Miguel2,Naya Salvador3,Tarrío-Saavedra Javier3ORCID

Affiliation:

1. Department of Mathematics, Faculty of Sciences, Escuela Politécnica Nacional, Quito 170517, Ecuador

2. MODES Group, Department of Mathematics, Faculty of Sciences, Escuela Politécnica Nacional, Quito 170517, Ecuador

3. MODES Group, CITIC, Department of Mathematics, Escola Politécnica de Enxeñaría de Ferrol, Universidade da Coruña, 15403 Ferrol, Spain

Abstract

The present work develops a methodology for the detection of outliers in functional data, taking into account both their shape and magnitude. Specifically, the multivariate method of anomaly detection called Local Correlation Integral (LOCI) has been extended and adapted to be applied to the particular case of functional data, using the calculation of distances in Hilbert spaces. This methodology has been validated with a simulation study and its application to real data. The simulation study has taken into account scenarios with functional data or curves with different degrees of dependence, as is usual in cases of continuously monitored data versus time. The results of the simulation study show that the functional approach of the LOCI method performs well in scenarios with inter-curve dependence, especially when the outliers are due to the magnitude of the curves. These results are supported by applying the present procedure to the meteorological database of the Alternative Energy and Environment Group in Ecuador, specifically to the humidity curves, presenting better performance than other competitive methods.

Funder

CITIC

Escuela Politécnica Nacional

Ministerio de Ciencia e Innovaciín

Xunta de Galicia

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference67 articles.

1. Ullah, S., and Finch, C.F. (2013). Applications of functional data analysis: A systematic review. BMC Med. Res. Methodol., 13.

2. A review on human-centered IoT-connected smart labels for the industry 4.0;IEEE Access.,2018

3. Exploratory analysis of functional data via clustering and optimal segmentation;Hugueney;Neurocomputing,2010

4. Functional boxplots;Sun;J. Comput. Graph. Stat.,2011

5. Baíllo, A., Cuevas, A., and Fraiman, R. (2011). The Oxford Handbook of Functional Data Analysis, Oxford University Press. Oxford Handbooks.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3