Applying GIS in Blue-Green Infrastructure Design in Urban Areas for Better Life Quality and Climate Resilience

Author:

Czyża Szymon1ORCID,Kowalczyk Anna Maria2ORCID

Affiliation:

1. Department of Geoinformation and Cartography, Institute of Geodesy and Civil Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland

2. Department of Geodesy, Institute of Geodesy and Civil Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland

Abstract

The expansion of urban centers and peri-urban zones significantly impacts both the natural world and human well-being, leading to issues such as increased air pollution, the formation of urban heat islands, and challenges in water management. The concept of multifunctional greening serves as a cornerstone, emphasizing the interconnectedness of ecological, social, and health-related factors. This study aimed to identify potential locations for three specific types of blue-green infrastructure (BGI): bioswales, infiltration trenches, and green bus stops. Leveraging geospatial datasets, Geographic Information System (GIS) technology, and remote sensing methodologies, this study conducted a comprehensive analysis and modeling of spatial information. Initial cartographic representations were developed to identify specific locations within Olsztyn, a city in Poland, deemed appropriate for the implementation of the designated blue-green infrastructure (BGI) components. Following this, these models were combined with two additional models created by the researchers: a surface urban heat island (SUHI) model and a demographic model that outlined the age structure of the city’s population. This synergistic approach resulted in the development of a detailed map, which identified potential locations for the implementation of blue-green infrastructure. This was achieved by utilizing vector data acquired with a precision of 1 m. The high level of detail on the map allows for an extremely accurate representation of geographical features and infrastructure layouts, which are essential for precise planning and implementation. This infrastructure is identified as a key strategy for strengthening ecosystem resilience, improving urban livability, and promoting public health and well-being.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3