Elevating Recycling Standards: Global Requirements for Plastic Traceability and Quality Testing

Author:

Gazeau Benjamin1ORCID,Minunno Roberto1ORCID,Zaman Atiq1ORCID,Shaikh Faiz2ORCID

Affiliation:

1. Curtin University Sustainability Policy Institute (CUSP), School of Design and the Built Environment, Curtin University, Perth 6845, Australia

2. School of Civil and Mechanical Engineering, Curtin University, Perth 6845, Australia

Abstract

Globally, we produced 489 million tonnes of plastic in 2023 and we recycled only 8.17%. This study navigates the landscape of recycling practices, highlighting the imperative to reevaluate and upgrade industry-standard protocols. The central focus of this study is on integrating more robust traceability criteria and advanced quality testing methodologies to improve recycled plastics with intrinsic value, particularly in anticipation of future market applications. The investigation examines the prevailing industry standard traceability and quality framework. It then assesses the applicability of those standards using technical datasheets for recycled high-density polyethylene resin grades. This study proposes a paradigm shift toward a more sophisticated analytical approach. This comprehensive framework aims to transcend traditional quality and traceability evaluation. This paper employs a mixed methodological approach, including a thematic analysis of relevant industry standard regulations and an in-depth literature review, to address the need for an operational framework for recycling quality. This study highlights that recycling quality depends on technical attributes determining functionality and application suitability. While some properties are measured, the conventional framework does not address the degradation level of recycled plastic. This study concludes with broader considerations, emphasising the need for a traceability model to disclose material history and composition. This study advocates an industry-wide upgrade in recycling standards, prioritising traceability and quality testing. The proposed enhancements in testing grids and the improved understanding of recycling quality collectively contribute to a holistic framework, unlocking the intrinsic value of recycled plastics for future market applications.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3