Abstract
We report the experimental implementation of optically-powered wireless sensor nodes based on the power-over-fiber (PoF) technology, aiming at Industrial Internet of Things (IIoT) applications. This technique employs optical fibers to transmit power and is proposed as a solution to address the hazardous industrial environment challenges, e.g., electromagnetic interference and extreme temperatures. The proposed approach enables two different IIoT scenarios, in which wireless transmitter (TX) and receiver (RX) nodes are powered by a PoF system, enabling local and remote temperature data monitoring, with the purpose of achieving an intelligent and reliable process management in industrial production lines. In addition, the system performance is investigated as a function of the delivered electrical power and power transmission efficiency (PTE), which is the primary performance metric of a PoF system. We report 1.4 W electrical power deliver with PTE = 24%. Furthermore, we carry out a voltage stability analysis, demonstrating that the PoF system is capable of delivering stable voltage to a wide range of applications. Finally, we present a comparison of temperature measurements between the proposed approach and a conventional industrial programmable logic controller (PLC). The obtained results demonstrate that PoF might be considered as a potential technology to power and enhance the energy efficiency of IIoT sensing systems.
Funder
National Education and Research Network
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献