Effects of a Cool Roof System on the Mitigation of Building Temperature: Empirical Evidence from a Field Experiment

Author:

Park Jaehong,Lee SugieORCID

Abstract

This study aimed to examine the effects of a cool roof system on the building temperature mitigation using a field experiment under current climate conditions in Seoul, Korea. Particularly, this study analyzed which meteorological factors affect the performance of the cool roof system based on the results of a field experiment during four seasons at the study site with real-time changes in various urban meteorological variables. This study also examined the extent to which each meteorological variable affects a cool roof system. Automatic temperature data loggers were installed on the roof of a Dobong eco-class building with reduced experimental models that included both conventional and cool roofs. A multiple regression analysis showed that when applying the cool roof system with other explanatory variables being controlled, the surface temperature of the building roof decreased by approximately 5.6 °C, and the indoor air temperature of the experimental model decreased by approximately 0.56 °C. These temperature reduction effects are meaningful, as the annual average reduction effects include nighttime and daytime. In addition, the most influential weather condition variable for roof surface or indoor temperature is external temperature, followed by insolation and humidity. Finally, the surface temperature reduction values in the actual roof of the study site and those of the roof surface of the experimental model were different. This suggests that the effect of temperature change on cool roofs is related to environmental factors as well as roofing materials. Therefore, the study suggests that cool roof policies should consider not only solar reflectivity but also other building environmental conditions and roofing materials.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Affordable green materials for developed cool roof applications: A review;Renewable and Sustainable Energy Reviews;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3