An Improved Method of Handling Missing Values in the Analysis of Sample Entropy for Continuous Monitoring of Physiological Signals

Author:

Dong Xinzheng,Chen Chang,Geng Qingshan,Cao Zhixin,Chen Xiaoyan,Lin Jinxiang,Jin Yu,Zhang Zhaozhi,Shi Yan,Zhang Xiaohua DouglasORCID

Abstract

Medical devices generate huge amounts of continuous time series data. However, missing values commonly found in these data can prevent us from directly using analytic methods such as sample entropy to reveal the information contained in these data. To minimize the influence of missing points on the calculation of sample entropy, we propose a new method to handle missing values in continuous time series data. We use both experimental and simulated datasets to compare the performance (in percentage error) of our proposed method with three currently used methods: skipping the missing values, linear interpolation, and bootstrapping. Unlike the methods that involve modifying the input data, our method modifies the calculation process. This keeps the data unchanged which is less intrusive to the structure of the data. The results demonstrate that our method has a consistent lower average percentage error than other three commonly used methods in multiple common physiological signals. For missing values in common physiological signal type, different data size and generating mechanism, our method can more accurately extract the information contained in continuously monitored data than traditional methods. So it may serve as an effective tool for handling missing values and may have broad utility in analyzing sample entropy for common physiological signals. This could help develop new tools for disease diagnosis and evaluation of treatment effects.

Funder

Universidade de Macau

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing the measurement of sample entropy in resting-state fMRI data;Frontiers in Neurology;2024-02-15

2. Variance of entropy for testing time-varying regimes with an application to meme stocks;Decisions in Economics and Finance;2024-01-05

3. Low-Cost, Wireless Bioelectric Signal Acquisition and Classification Platform;IEEE Access;2024

4. Multimodal Estimation Of Change Points Of Physiological Arousal During Driving;2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW);2023-06-04

5. Missing data imputation techniques for wireless continuous vital signs monitoring;Journal of Clinical Monitoring and Computing;2023-02-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3