Abstract
We derive an entropic uncertainty relation for generalized positive-operator-valued measure (POVM) measurements via a direct-sum majorization relation using Schur concavity of entropic quantities in a finite-dimensional Hilbert space. Our approach provides a significant improvement of the uncertainty bound compared with previous majorization-based approaches (Friendland, S.; Gheorghiu, V.; Gour, G. Phys. Rev. Lett. 2013, 111, 230401; Rastegin, A.E.; Życzkowski, K. J. Phys. A, 2016, 49, 355301), particularly by extending the direct-sum majorization relation first introduced in (Rudnicki, Ł.; Puchała, Z.; Życzkowski, K. Phys. Rev. A 2014, 89, 052115). We illustrate the usefulness of our uncertainty relations by considering a pair of qubit observables in a two-dimensional system and randomly chosen unsharp observables in a three-dimensional system. We also demonstrate that our bound tends to be stronger than the generalized Maassen–Uffink bound with an increase in the unsharpness effect. Furthermore, we extend our approach to the case of multiple POVM measurements, thus making it possible to establish entropic uncertainty relations involving more than two observables.
Funder
Qatar National Research Fund
Subject
General Physics and Astronomy
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献