Effects of Slope Position on Morphological, Anatomical, and Chemical Traits of Cunninghamia lanceolata (Lamb.) Hook. Fine Roots

Author:

Li Linxin1,Liang Jing1,Tian Yunlong1,Li Ming1,Ma Xiangqing1,Liu Aiqin1,Wu Pengfei1ORCID

Affiliation:

1. Chinese Fir Engineering Technology Research Center of State Forestry Administration, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China

Abstract

Fine root traits and their relationships reflect the ecological trade-off strategies of plants in resource investment and are important for understanding the life strategies and growth of plants in response to changes in the environment. We used 16-year-old Chinese fir (Cunninghamia lanceolata Lamb. Hook.) plantations with different slope positions as the research object to explore the morphological, anatomical, and chemical properties of fine roots and their relationships. With increasing root order levels, the morphological, anatomical, and chemical traits of the fine roots of Chinese fir at different slope positions showed similar change trends; however, at the same order level, the differences were large. Under the upper slope site conditions, the average diameter of the second- and third-order roots and the thickness of the third-order root cortex were the highest. However, specific surface area, vascular bundle diameter, and the ratio of third-order roots were higher under the middle-slope site conditions. Under the lower slope site conditions, the specific surface area and specific root length of first-order roots and the root ratio of second-order roots were the highest. The biomasses of the first- and third-order roots on the middle and lower slopes were higher than those on the upper slope. The contents of N and P in fine roots of grades 1–3 Chinese fir showed the order of lower slope > middle slope > upper slope; however, the changes in C/N and C/P ratios showed the opposite trend, indicating differences in the morphological, anatomical, and chemical properties as well as resource acquisition strategies of fine roots of grades 1–3 Chinese fir under different slope positions. There were negative correlations between fine root diameter, N and P contents, and specific root length, indicating an acquisition and conservative resource trade-off relationships between fine root morphological, anatomical, and chemical traits. There were also differences in the relationships between the morphological, anatomical, and chemical traits of Chinese fir fine roots at different slope positions, indicating that the relationships between these traits were affected by slope position change. Chinese fir varieties with root-foraging characteristics ranging from resource conservation to resource acquisition can be selected for planting to improve the productivity of C. lanceolata plantations.

Funder

National Natural Science Foundation of China

14th Five-Year National Key Research and Development Project, China

Seed Industry Innovation and Industrialization Project of Fujian Province, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3