Flash Flood Forecasting Using Support Vector Regression Model in a Small Mountainous Catchment

Author:

Wu Jian,Liu Haixing,Wei Guozhen,Song Tianyu,Zhang Chi,Zhou Huicheng

Abstract

Flash floods in mountainous catchments are often caused by the rainstorm, which may result in more severe consequences than plain area floods due to less timescale and a fast-flowing front of water and debris. Flash flood forecasting is a huge challenge for hydrologists and managers due to its instantaneity, nonlinearity, and dependency. Among different methods of flood forecasting, data-driven models have become increasingly popular in recent years due to their strong ability to simulate nonlinear hydrological processes. This study proposed a Support Vector Regression (SVR) model, which is a powerful artificial intelligence-based model originated from statistical learning theory, to forecast flash floods at different lead times in a small mountainous catchment. The lagged average rainfall and runoff are identified as model input variables, and the time lags associated with the model input variables are determined by the hydrological concept of the time of response. There are 69 flash flood events collected from 1984 to 2012 in a mountainous catchment in China and then used for the model training and testing. The contribution of the runoff variables to the predictions and the phase lag of model outputs are analyzed. The results show that: (i) the SVR model has satisfactory predictive performances for one to three-hours ahead forecasting; (ii) the lagged runoff variables have a more significant effect on the predictions than the rainfall variables; and (iii) the phase lag (time difference) of prediction results significantly exists in both two- and three-hours-ahead forecasting models, however, the input rainfall information can assist in mitigating the phase lag of peak flow.

Funder

National Key Research and Development Program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference81 articles.

1. 2009 Global Assessment Report on Disaster Risk Reduction: Patterns, Trends, and Drivers;Peduzzi,2009

2. Flood Disaster Management in Malaysia: Standard Operating Procedures (SOPs) Review;Tahir,2016

3. Flood Hazard Assessment for Extreme Flood Events;Kvočka,2016

4. Hydrologic response to future land use change in the Upper Mississippi River Basin by the end of 21st century

5. Large scale spatially explicit modeling of blue and green water dynamics in a temperate mid-latitude basin

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3