The Influence of Sinusoidal Oscillating Water Flow on Sprinkler and Impact Kinetic Energy Intensities of Laterally-Moving Sprinkler Irrigation Systems

Author:

Zhang Kai,Song Bo,Zhu Delan

Abstract

Laterally-moving sprinkler irrigation systems under low pressure experience problems including small spraying range, low uniformity, surface runoff, and low water utilization rate. To solve these problems, experiments were carried out on a laterally-moving sprinkler irrigation system using a Nelson D3000 sprinkler (Nelson Irrigation Co., Walla Walla, WA, USA) under low pressure, sinusoidal oscillating water flow. The sprinkler intensity and impact kinetic energy intensity distribution were investigated for sprinklers both static and in motion. The test data were used to calculate combined sprinkler intensity and impact kinetic energy intensity uniformity for different nozzle spacings, and were compared with constant water pressure test results. It was found that sinusoidal oscillating water flow can effectively increase spraying range, as well as reducing the peak value of the sprinkler intensity and impact kinetic energy intensity. Within an optimal range of amplitude and nozzle spacing, sinusoidal oscillating water flow significantly improves the combined sprinkler intensity, impact kinetic energy intensity uniformity, and the spraying quality of laterally-moving sprinkler irrigation systems under low pressure conditions. When the average water pressure is 100 kPa, the optimal range of amplitude of sinusoidal oscillating flow applied to the laterally-moving sprinkler irrigation system is 50–60 kPa. When the amplitude is 50 kPa, the optimal nozzle spacing is 3.5–4 m; when the amplitude is 60 kPa, the optimal nozzle spacing is 3.5–4.5 m. The related parameters can provide a reference for the application of sinusoidal oscillating water flow in laterally-moving sprinkler irrigation systems.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3