Development and Characterization of a Sin Nombre Virus Transmission Model in Peromyscus maniculatus

Author:

Warner Bryce,Stein Derek,Griffin Bryan,Tierney Kevin,Leung Anders,Sloan Angela,Kobasa Darwyn,Poliquin Guillaume,Kobinger Gary,Safronetz David

Abstract

In North America, Sin Nombre virus (SNV) is the main cause of hantavirus cardiopulmonary syndrome (HCPS), a severe respiratory disease with a fatality rate of 35–40%. SNV is a zoonotic pathogen carried by deer mice (Peromyscus maniculatus), and few studies have been performed examining its transmission in deer mouse populations. Studying SNV and other hantaviruses can be difficult due to the need to propagate the virus in vivo for subsequent experiments. We show that when compared with standard intramuscular infection, the intraperitoneal infection of deer mice can be as effective in producing SNV stocks with a high viral RNA copy number, and this method of infection provides a more reproducible infection model. Furthermore, the age and sex of the infected deer mice have little effect on viral replication and shedding. We also describe a reliable model of direct experimental SNV transmission. We examined the transmission of SNV between deer mice and found that direct contact between deer mice is the main driver of SNV transmission rather than exposure to contaminated excreta/secreta, which is thought to be the main driver of transmission of the virus to humans. Furthermore, increases in heat shock responses or testosterone levels in SNV-infected deer mice do not increase the replication, shedding, or rate of transmission. Here, we have demonstrated a model for the transmission of SNV between deer mice, the natural rodent reservoir for the virus. The use of this model will have important implications for further examining SNV transmission and in developing strategies for the prevention of SNV infection in deer mouse populations.

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3