Snow Cover Reconstruction in the Brunswick Peninsula, Patagonia, Derived from a Combination of the Spectral Fusion, Mixture Analysis, and Temporal Interpolation of MODIS Data

Author:

Aguirre Francisco123ORCID,Bozkurt Deniz45ORCID,Sauter Tobias6ORCID,Carrasco Jorge1ORCID,Schneider Christoph6ORCID,Jaña Ricardo7ORCID,Casassa Gino1

Affiliation:

1. Centro de Investigación Gaia Antártica (CIGA), Universidad de Magallanes, Punta Arenas 6210427, Chile

2. Ecology and Biodiversity Institute (IEB), Puerto Williams 6350080, Chile

3. The School for Field Studies, Center for Climate Studies, Puerto Natales 6161009, Chile

4. Center for Climate and Resilience Research (CR)2, Santiago 8320000, Chile

5. Departamento de Meteorología, Universidad de Valparaíso, Valparaíso 2340000, Chile

6. Geography Department, Humboldt-Universität zu Berlin, 12489 Berlin, Germany

7. Scientific Department, Chilean Antarctic Institute, Punta Arenas 6200965, Chile

Abstract

Several methods based on satellite data products are available to estimate snow cover properties, each one with its pros and cons. This work proposes and implements a novel methodology that integrates three main processes applied to MODIS satellite data for snow cover property reconstruction: (1) the increase in the spatial resolution of MODIS (MOD09) data to 250 m using a spectral fusion technique; (2) a new proposal of snow-cloud discrimination; (3) the daily spatio-temporal reconstruction of snow extent and its albedo signature using the endmembers extraction and spectral mixture analyses. The snow cover reconstruction method was applied to the Brunswick Peninsula, Chilean Patagonia, a low-elevation (<1500 m a.s.l.) mid-latitude area. The results show a 98% agreement between MODIS snow detection and ground-based snow measurements at the automatic weather station, Tres Morros (53.3174°S, 71.2790°W), with fractional snow cover values between 20% and 50%, showing a close relationship between snow and vegetation type. The number of snow days compiled from the MODIS data indicates a good performance (Pearson’s correlation of 0.9) compared with the number of skiing days at the Cerro Mirador ski center, Punta Arenas. Although the number of seasonal snow days showed a significant increasing trend of 0.54 days/year in the Brunswick Peninsula during the 2000–2020 period, a significant decrease of −4.64 days/year was detected in 2010–2020.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning for Satellite Image Time-Series Analysis: A review;IEEE Geoscience and Remote Sensing Magazine;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3