Affiliation:
1. National Physical Laboratory (NPL), Hampton Road, Middlesex, Teddington TW11 0LW, UK
Abstract
Carbon dioxide (CO2) is a known greenhouse gas and one of the largest contributors to global warming in the Earth’s atmosphere. The remote detection and measurement of CO2 from industrial emissions are not routinely carried out and are typically calculated from the fuel combusted or measured directly within ducted vents. However, these methods are not applicable for the quantification of fugitive emissions of CO2. This work presents the results of remote measurement of CO2 emissions using the differential absorption lidar (DIAL) technique at a wavelength of ~2 µm. The results from the DIAL measurements compare well with simultaneous in-stack measurements, these datasets were plotted against each other and can be described by a linear regression of y (t/h) = 1.04 x − 0.02, suggesting any bias in the DIAL data is likely small. Moreover, using the definition outlined in EN 15267-3 a lower detection limit of 0.12 t/h was estimated for the 2 µm wavelength DIAL data, this is three orders of magnitude lower than the corresponding CO2 detection limit measured by NPL in the 1.5 µm wavelength region. Thus, this paper demonstrates the feasibility of high-resolution, ground-based DIAL measurements for quantifying industrial CO2 emissions.
Funder
National Measurement Office of the UK’s Department of Science, Innovation and Technology
EMPIR programme co-financed by the Participating States
European Union’s Horizon 2020 research and innovation programme
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Observations for Chemistry (Remote Sensing): Lidar;Reference Module in Earth Systems and Environmental Sciences;2024