Seasonal and Diurnal Changes of Air Temperature and Water Vapor Observed with a Microwave Radiometer in Wuhan, China

Author:

Guo Xinglin123,Huang Kaiming123,Fang Junjie12,Zhang Zirui12,Cao Rang12,Yi Fan123

Affiliation:

1. School of Electronic Information, Wuhan University, Wuhan 430072, China

2. Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan 430072, China

3. State Observatory for Atmospheric Remote Sensing, Wuhan 430072, China

Abstract

Based on Microwave Radiometer (MWR) observations in Wuhan over the course of 21 months, we compared the temperature and water vapor levels with those from radiosonde (RS) sounding data at 00:00 and 12:00 UTC, and then analyzed the seasonal and diurnal changes of temperature and water vapor levels from the MWR data. The MWR and RS mean temperatures and dew points are roughly consistent with each other below 2 km, whereas above 2 km, the MWR temperature is slightly lower than the RS temperature. The difference in their water vapor densities decreases quickly with height, and the bias of their relative humidities is generally in the range of −15% to 20%. The MWR observations show that in autumn, the surface temperature is 6.8 K lower during precipitation events than during non-precipitation events, indicating that precipitation in autumn is mainly caused by cold air from the north. The relative humidity during precipitation events exceeds 90% from the ground to 5 km, which is obviously larger than during non-precipitation events. During non-precipitation events, the seasonal mean water vapor density at 0–1.0 km shows an approximately linear increase with the mean temperature; however, their diurnal changes are opposite due to the effect of the boundary layer. At 4.5–5.5 km and 8.5–9.5 km, the mean temperature shows a synchronized diurnal evolution, with the maximum value prior to that at 0–1.0 km, indicating the strong influence of the air–land interaction on the temperature near the ground. Hence, this study is helpful for deepening our understanding of temperature and humidity variabilities over Wuhan.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3