Abstract
Development of biodegradable materials for packaging is an issue of the utmost importance. These materials are an alternative to petroleum-based polymers, which contribute to environment pollution after disposal. In this work, graphene oxide (GO) and glucose-reduced graphene oxide (rGO-g) were incorporated to thermoplastic starch (TPS) by melt extrusion. The TPS/GO and TPS/rGO-g composites had their physical properties and biodegradability compared. X-ray diffraction (XRD) showed that the type of graphene used led to different dispersion levels of graphene sheets, and to changes in the crystalline structure of TPS. Tensile tests carried out for the compression-molded composites indicated that TPS/rGO-g composites presented better mechanical performance. The Young’s modulus (E) increased from E = (28.6 ± 2.7) MPa, for TPS, to E = (110.6 ± 9.5) MPa and to (144.2 ± 11.2) MPa for TPS with rGO-g incorporated at 1.0 and 2.0 mass% content, respectively. The acid groups from graphene derivatives promoted glycosidic bond breakage of starch molecules and improved biodegradation of the composites. GO is well-dispersed in the TPS matrix, which contributes to biodegradation. For TPS/rGO-g materials, biodegradation was influenced by rGO-g dispersion level.
Funder
Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献