Potential Biomedical Applications of Modified Pectin as a Delivery System for Bioactive Substances

Author:

Odun-Ayo FrederickORCID,Reddy LaliniORCID

Abstract

Pectin is a polysaccharide that has been recently gaining attention because it is renewable, inexpensive, biocompatible, degradable, non-toxic, non-polluting, and has mechanical integrity. The recent extraction techniques and modification to the structural property of pectin have led to the modified pectin whose chemical and surface functional groups yield galacturonic acid and galactose contents which are primarily responsible for its improved and better use in biomedical applications including drug delivery and thus producing high-value products. Major attention on modified pectin has been focused on the aspect of its bioactive functionalities that opposes cancer development. Nevertheless, modified pectin can be combined with a wide range of biopolymers with unique characteristics and activities which thus enhances its application in different areas. This has enabled the current applications of modified pectin through different approaches in addition to the prominent anti-cancer functional capabilities, which were reviewed. Furthermore, this paper highlights the potential of modified pectin as a delivery system of bioactive substances, its synergistic and prebiotic effects, gut microbiota effect and antiviral properties amongst other roles applicable in the biomedical and pharmaceutical industries.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference206 articles.

1. Martău, G.A., Mihai, M., and Vodnar, D.C. (2019). The use of chitosan, alginate, and pectin in the biomedical and food sector—Biocompatibility, bioadhesiveness, and biodegradability. Polymers, 11.

2. (2022, September 06). Bioplastics & Biopolymers Market by Type (Non-Biodegradable/Bio-Based, Biodegradable), End-Use Industry (Packaging, Consumer Goods, Automotive & Transportation, Textiles, Agriculture & Horticulture), Region—Global Forecast to 2026. Available online: https://www.marketsandmarkets.com/Market-Reports/biopolymers-bioplastics-market-88795240.html?gclid.

3. Modified citrus pectin stops progression of liver fibrosis by inhibiting galectin-3 and inducing apoptosis of stellate cells;Elkashef;Can. J. Physiol. Pharmacol.,2016

4. Recent progress in controlled carbonization of (waste) polymers;Gong;Prog. Polym. Sci.,2019

5. Fruit waste pectin in enhancing the establishment of probiotic bacteria;Sen;J. Nutr. Health Food Eng.,2014

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3