Lactic Acid Fermentation of Carrageenan Hydrolysates from the Macroalga Kappaphycus alvarezii: Evaluating Different Bioreactor Operation Modes

Author:

Tabacof Adam1ORCID,Calado Verônica2ORCID,Pereira Nei2ORCID

Affiliation:

1. Chemical Processes Technologies Department, Federal Institute of Rio de Janeiro for Education, Science and Technology, Rio de Janeiro 20270-021, RJ, Brazil

2. Center of Biofuels, Petroleum and Derivatives, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-972, RJ, Brazil

Abstract

Lactic acid is a molecule used abundantly in the food, cosmetic, and pharmaceutical industries. It is also the building block for polylactic acid, a biodegradable polymer which has gained interest over the last decade. Seaweeds are fast growing, environmentally friendly, and economically beneficial. The Rhodophyta, Kappaphycus alvarezii, is a carrageenan-rich alga, which can be successfully fermented into lactic acid using lactic acid bacteria. Lactobacillus pentosus is a versatile and robust bacterium and an efficient producer of lactic acid from many different raw materials. Bioreactor strategies for lactic acid fermentation of K. alvarezii hydrolysate were tested in 2-L stirred-tank bioreactor fermentations, operating at 37 °C, pH 6, and 150 rpm. Productivity and yields were 1.37 g/(L.h) and 1.17 g/g for the pulse fed-batch, and 1.10 g/(L.h) and 1.04 g/g for extended fed-batch systems. A 3.57 g/(L.h) production rate and a 1.37 g/g yield for batch fermentation operating with an inoculum size of 0.6 g/L was recorded. When applying fed-batch strategies, fermentation products reached 91 g/L with pulse feed and 133 g/L with constant continuous feed. For control and comparison, a simple batch of synthetic galactose-rich Man-Sharpe-Rugosa (MRS) media was fermented at the same conditions. A short study of charcoal regenerability is shown. A scheme for a third-generation lactic acid biorefinery is proposed, envisioning a future sustainable large-scale production of this important organic acid.

Funder

CNPq

FAPERJ

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3