Macroporous Hyaluronic Acid/Chitosan Polyelectrolyte Complex-Based Hydrogels Loaded with Hydroxyapatite Nanoparticles: Preparation, Characterization and In Vitro Evaluation

Author:

Drozdova Maria G.,Demina Tatiana S.ORCID,Dregval Ostap A.ORCID,Gaidar Anna I.,Andreeva Elena R.,Zelenetskii Alexander N.,Akopova Tatiana A.ORCID,Markvicheva Elena

Abstract

The aim of the study was to fabricate and characterize composite macroporous hydrogels based on a hyaluronic acid/chitosan (Hyal/Ch) polyelectrolyte complex (PEC) loaded with homogeneously distributed hydroxyapatite nanoparticles (nHAp), and to evaluate them in vitro using mouse fibroblasts (L929), osteoblast-like cells (HOS) and human mesenchymal stromal cells (hMSC). Hydrogel morphology as a function of the hydroxyapatite nanoparticle content was studied using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The mean pore size in the Hyal/Ch hydrogel was 204 ± 25 μm. The entrapment of nHAp (1 and 5 wt. %) into the Hyal/Ch hydrogel led to a mean pore size decrease (94 ± 2 and 77 ± 9 μm, relatively). Swelling ratio and weight loss of the hydrogels in various aqueous media were found to increase with an enhancement of a medium ionic strength. Cell morphology and localization within the hydrogels was studied by CLSM. Cell viability depended upon the nHAp content and was evaluated by MTT-assay after 7 days of cultivation in the hydrogels. An increase of the hydroxyapatite nanoparticles loading in a range of 1–10 wt. % resulted in an enhancement of cell growth and proliferation for all hydrogels. Maximum cell viability was obtained in case of the Hyal/Ch/nHAp-10 sample (10 wt. % nHAp), while a minimal cell number was found for the Hyal/Ch/nHAp-1 hydrogel (1 wt. % nHAp). Thus, the proposed simple original technique and the design of PEC hydrogels could be promising for tissue engineering, in particular for bone tissue repair.

Funder

Russian Science Foundation

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3