Native and Oxidized Starch for Adsorption of Nickel, Iron, and Manganese Ions from Water

Author:

Boughanmi RahmaORCID,Borchert Konstantin B. L.ORCID,Steinbach Christine,Mayer MartinORCID,Schwarz SimonaORCID,Svirepa Anastasiya,Schwarz Johannes,Mertig MichaelORCID,Schwarz Dana

Abstract

The adsorption of heavy metal ions from surface water with ecologically safe and biodegradable biopolymers is increasingly becoming an appealing research challenge. Starch as a biopolymer is exceptionally attractive to solve this problem for its low cost and abundant availability in nature. To expel Ni2+, Fe2+/3+, and Mn2+ from water, we analyzed two native and two oxidized starches, namely potato and corn starch, as bio-adsorbers. The morphology and the surface property of the different starches were studied using SEM. To assess the effectiveness of adsorption onto the starches, we tested three realistic concentrations based on German drinking water ordinance values that were 10-fold, 100-fold, and 1000-fold the limits for Mn2+, Fe2+, and Ni2+, respectively. The concentration of the different ions was measured using the ICP-OES. Furthermore, from subsequent investigations of the adsorption isotherms, we evaluated the adsorption capacities and mechanisms. The adsorption isotherms were fitted using the Langmuir, Sips, and Dubinin–Radushkevich models, whereby Sips showed the highest correlation. Oxidized potato starch achieved viable adsorption capacities of 77 µmol Fe2+/g, 84 µmol Mn2+/g, and 118 µmol Ni2+/g. Investigating the influence of initial swelling in water on the adsorption performance, we found that especially the percentage removal with oxidized starches decreased significantly due to the formation of hydrogen bonds with water molecules at their binding sites with prior swelling.

Funder

SAB

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3