A New Entropy-Based Atrial Fibrillation Detection Method for Scanning Wearable ECG Recordings

Author:

Zhao Lina,Liu Chengyu,Wei Shoushui,Shen Qin,Zhou Fan,Li Jianqing

Abstract

Entropy-based atrial fibrillation (AF) detectors have been applied for short-term electrocardiogram (ECG) analysis. However, existing methods suffer from several limitations. To enhance the performance of entropy-based AF detectors, we have developed a new entropy measure, named EntropyAF, which includes the following improvements: (1) use of a ranged function rather than the Chebyshev function to define vector distance, (2) use of a fuzzy function to determine vector similarity, (3) replacement of the probability estimation with density estimation for entropy calculation, (4) use of a flexible distance threshold parameter, and (5) use of adjusted entropy results for the heart rate effect. EntropyAF was trained using the MIT-BIH Atrial Fibrillation (AF) database, and tested on the clinical wearable long-term AF recordings. Three previous entropy-based AF detectors were used for comparison: sample entropy (SampEn), fuzzy measure entropy (FuzzyMEn) and coefficient of sample entropy (COSEn). For classifying AF and non-AF rhythms in the MIT-BIH AF database, EntropyAF achieved the highest area under receiver operating characteristic curve (AUC) values of 98.15% when using a 30-beat time window, which was higher than COSEn with AUC of 91.86%. SampEn and FuzzyMEn resulted in much lower AUCs of 74.68% and 79.24% respectively. For classifying AF and non-AF rhythms in the clinical wearable AF database, EntropyAF also generated the largest values of Youden index (77.94%), sensitivity (92.77%), specificity (85.17%), accuracy (87.10%), positive predictivity (68.09%) and negative predictivity (97.18%). COSEn had the second-best accuracy of 78.63%, followed by an accuracy of 65.08% in FuzzyMEn and an accuracy of 59.91% in SampEn. The new proposed EntropyAF also generated highest classification accuracy when using a 12-beat time window. In addition, the results from time cost analysis verified the efficiency of the new EntropyAF. This study showed the better discrimination ability for identifying AF when using EntropyAF method, indicating that it would be useful for the practical clinical wearable AF scanning.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3