Author:
Zhao Lina,Liu Chengyu,Wei Shoushui,Shen Qin,Zhou Fan,Li Jianqing
Abstract
Entropy-based atrial fibrillation (AF) detectors have been applied for short-term electrocardiogram (ECG) analysis. However, existing methods suffer from several limitations. To enhance the performance of entropy-based AF detectors, we have developed a new entropy measure, named EntropyAF, which includes the following improvements: (1) use of a ranged function rather than the Chebyshev function to define vector distance, (2) use of a fuzzy function to determine vector similarity, (3) replacement of the probability estimation with density estimation for entropy calculation, (4) use of a flexible distance threshold parameter, and (5) use of adjusted entropy results for the heart rate effect. EntropyAF was trained using the MIT-BIH Atrial Fibrillation (AF) database, and tested on the clinical wearable long-term AF recordings. Three previous entropy-based AF detectors were used for comparison: sample entropy (SampEn), fuzzy measure entropy (FuzzyMEn) and coefficient of sample entropy (COSEn). For classifying AF and non-AF rhythms in the MIT-BIH AF database, EntropyAF achieved the highest area under receiver operating characteristic curve (AUC) values of 98.15% when using a 30-beat time window, which was higher than COSEn with AUC of 91.86%. SampEn and FuzzyMEn resulted in much lower AUCs of 74.68% and 79.24% respectively. For classifying AF and non-AF rhythms in the clinical wearable AF database, EntropyAF also generated the largest values of Youden index (77.94%), sensitivity (92.77%), specificity (85.17%), accuracy (87.10%), positive predictivity (68.09%) and negative predictivity (97.18%). COSEn had the second-best accuracy of 78.63%, followed by an accuracy of 65.08% in FuzzyMEn and an accuracy of 59.91% in SampEn. The new proposed EntropyAF also generated highest classification accuracy when using a 12-beat time window. In addition, the results from time cost analysis verified the efficiency of the new EntropyAF. This study showed the better discrimination ability for identifying AF when using EntropyAF method, indicating that it would be useful for the practical clinical wearable AF scanning.
Funder
National Natural Science Foundation of China
Subject
General Physics and Astronomy
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献