Abstract
Accurately and reliably estimating total terrestrial gross primary production (GPP) on a large scale is of great significance for monitoring the carbon cycle process. The Sentinel-3 satellite provides the OLCI FAPAR and OTCI products, which possess a higher spatial and temporal resolution than MODIS products. However, few studies have focused on using LUE models and VI-driven models based on the Sentinel-3 satellites to estimate GPP on a large scale. The purpose of this study is to evaluate the performance of Sentinel-3 OLCI FAPAR and OTCI products combined with meteorology reanalysis data in estimating GPP at site and regional scale. Firstly, we integrated OLCI FAPAR and meteorology reanalysis data into the MODIS GPP algorithm and eddy covariance light use efficiency (EC-LUE) model (GPPMODIS-GPP and GPPEC-LUE, respectively). Then, we combined OTCI and meteorology reanalysis data with the greenness and radiation (GR) model and vegetation index (VI) model (GPPGR and GPPVI, respectively). Lastly, GPPMODIS-GPP, GPPEC-LUE, GPPGR, and GPPVI were evaluated against the eddy covariance flux data (GPPEC) at the site scale and MODIS GPP products (GPPMOD17) at the regional scale. The results showed that, at the site scale, GPPMODIS-GPP and GPPEC-LUE agreed well with GPPEC for the US-Ton site, with R2 = 0.73 and 0.74, respectively. The performance of GPPGR and GPPVI varied across different biome types. Strong correlations were obtained across deciduous broadleaf forests, mixed forests, grasslands, and croplands. At the same time, there are overestimations and underestimations in croplands, evergreen needleleaf forests and deciduous broadleaf forests. At the regional scale, the annual mean and maximum daily GPPMODIS-GPP and GPPEC-LUE agreed well with GPPMOD17 in 2017 and 2018, with R2 > 0.75. Overall, the above findings demonstrate the feasibility of using Sentinel-3 OLCI FAPAR and OTCI products combined with meteorology reanalysis data through LUE and VI-driven models to estimate GPP, and fill in the gaps for the large-scale evaluation of GPP via Sentinel-3 satellites.
Funder
the National Key Research and Development Program of China
the National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献